Lattictic non-archimedean random stability of ACQ functional equation
نویسندگان
چکیده
منابع مشابه
Non-Archimedean stability of Cauchy-Jensen Type functional equation
In this paper we investigate the generalized Hyers-Ulamstability of the following Cauchy-Jensen type functional equation$$QBig(frac{x+y}{2}+zBig)+QBig(frac{x+z}{2}+yBig)+QBig(frac{z+y}{2}+xBig)=2[Q(x)+Q(y)+Q(z)]$$ in non-Archimedean spaces
متن کاملnon-archimedean stability of cauchy-jensen type functional equation
in this paper we investigate the generalized hyers-ulamstability of the following cauchy-jensen type functional equation$$qbig(frac{x+y}{2}+zbig)+qbig(frac{x+z}{2}+ybig)+qbig(frac{z+y}{2}+xbig)=2[q(x)+q(y)+q(z)]$$ in non-archimedean spaces
متن کاملStability of the quadratic functional equation in non-Archimedean L-fuzzy normed spaces
In this paper, we prove the generalized Hyers-Ulam stability of the quadratic functionalequation$$f(x+y)+f(x-y)=2f(x)+2f(y)$$in non-Archimedean $mathcal{L}$-fuzzy normed spaces.
متن کاملStability of Fréchet functional equation in non - Archimedean normed spaces ∗
We will establish stability of Fréchet functional equation
متن کاملStability of k-Tribonacci Functional Equation in Non-Archimedean Space
1. A. H. Sales, About K-Fibonacci numbers and their associated numbers; Int. J. of Math Forum, Vol. 6, no.50, (2011) 24732479. 2. D. H. Hyers, On the stability if linear functional equation, Proc. Natl. Acad. Sci. USA. 27(1941) 221-224. 3. D. H. Hyers, G. Isac and Th. M Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Boston, 1998. 4. D. H. Hyers and Th. M. Rassias, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Difference Equations
سال: 2011
ISSN: 1687-1847
DOI: 10.1186/1687-1847-2011-31